SIRT3 Is Crucial for Maintaining Skeletal Muscle Insulin Action and Protects Against Severe Insulin Resistance in High-Fat–Fed Mice
نویسندگان
چکیده
Protein hyperacetylation is associated with glucose intolerance and insulin resistance, suggesting that the enzymes regulating the acetylome play a role in this pathological process. Sirtuin 3 (SIRT3), the primary mitochondrial deacetylase, has been linked to energy homeostasis. Thus, it is hypothesized that the dysregulation of the mitochondrial acetylation state, via genetic deletion of SIRT3, will amplify the deleterious effects of a high-fat diet (HFD). Hyperinsulinemic-euglycemic clamp experiments show, for the first time, that mice lacking SIRT3 exhibit increased insulin resistance due to defects in skeletal muscle glucose uptake. Permeabilized muscle fibers from HFD-fed SIRT3 knockout (KO) mice showed that tricarboxylic acid cycle substrate-based respiration is decreased while fatty acid-based respiration is increased, reflecting a fuel switch from glucose to fatty acids. Consistent with reduced muscle glucose uptake, hexokinase II (HKII) binding to the mitochondria is decreased in muscle from HFD-fed SIRT3 KO mice, suggesting decreased HKII activity. These results show that the absence of SIRT3 in HFD-fed mice causes profound impairments in insulin-stimulated muscle glucose uptake, creating an increased reliance on fatty acids. Insulin action was not impaired in the lean SIRT3 KO mice. This suggests that SIRT3 protects against dietary insulin resistance by facilitating glucose disposal and mitochondrial function.
منابع مشابه
Exercise Protects against Diet-Induced Insulin Resistance through Downregulation of Protein Kinase Cβ in Mice
Physical exercise is an important and effective therapy for diabetes. However, its underlying mechanism is not fully understood. Protein kinase Cβ (PKCβ) has been suggested to be involved in the pathogenesis of obesity and insulin resistance, but the role of PKCβ in exercise-induced improvements in insulin resistance is completely unknown. In this study, we evaluated the involvement of PKCβ in ...
متن کاملOverexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance.
Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and is strongly associated with obesity. Increased concentrations of intracellular fatty acid metabolites have been postulated to interfere with insulin signaling by activation of a serine kinase cascade involving PKCtheta in skeletal muscle. Uncoupling protein 3 (UCP3) has been postulated to dissipate the mitochondrial...
متن کاملLoss-of-Function Mutation in Myostatin Reduces Tumor Necrosis Factor α Production and Protects Liver Against Obesity-Induced Insulin Resistance
OBJECTIVE Insulin resistance develops in tandem with obesity. Ablating myostatin (Mstn) prevents obesity, so we investigated if Mstn deficiency could improve insulin sensitivity. A loss-of-function mutation (Mstn(Ln)) in either one or both alleles of the Mstn gene shows how Mstn deficiency protects whole-body insulin sensitivity. RESEARCH DESIGN AND METHODS Mstn(Ln/Ln) mice were weaned onto a...
متن کاملLoss of ACE2 Exaggerates High-Calorie Diet–Induced Insulin Resistance by Reduction of GLUT4 in Mice
ACE type 2 (ACE2) functions as a negative regulator of the renin-angiotensin system by cleaving angiotensin II (AII) into angiotensin 1-7 (A1-7). This study assessed the role of endogenous ACE2 in maintaining insulin sensitivity. Twelve-week-old male ACE2 knockout (ACE2KO) mice had normal insulin sensitivities when fed a standard diet. AII infusion or a high-fat, high-sucrose (HFHS) diet impair...
متن کاملActivating HSP72 in Rodent Skeletal Muscle Increases Mitochondrial Number and Oxidative Capacity and Decreases Insulin Resistance
Induction of heat shock protein (HSP)72 protects against obesity-induced insulin resistance, but the underlying mechanisms are unknown. Here, we show that HSP72 plays a pivotal role in increasing skeletal muscle mitochondrial number and oxidative metabolism. Mice overexpressing HSP72 in skeletal muscle (HSP72Tg) and control wild-type (WT) mice were fed either a chow or high-fat diet (HFD). Desp...
متن کامل